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The unsteady spreading of an insoluble monolayer containing a fixed mass of surface- 
active material over the initially horizontal free surface of a viscous fluid layer is 
investigated. A flow driving the spreading is induced by gradients in surface tension, 
which arise from the nonuniform surfactant distribution. Distinct phases in the flow’s 
dynamics are distinguished by a time T = Hi/v, where HO is the fluid depth and v its 
viscosity. For times t << T ,  i.e. before the lower boundary has any significant influence 
on the flow, a laminar sub-surface boundary-layer flow is generated. The effects of 
gravity, capillarity, surface diffusion or surface contamination may be weak enough 
for the flow to drive a substantial unsteady displacement of the free surface, upward 
behind the monolayer’s leading edge and downward towards its centre. Similarity 
solutions are identified describing the spreading of a localized planar monolayer 
strip (which spreads like t’/*) or an axisymmetric drop (which spreads like t3/*); 
using the Prandtl transformation, the associated boundary-layer problems are solved 
numerically. Quasi-steady sub-layers are shown to exist at the centre and at the 
leading edge of the monolayer; that due to surface contamination, for example, may 
eventually grow to dominate the flow, in which case spreading proceeds like t3I4. 
Once t = O( T ) ,  vorticity created at the free surface has diffused down to the lower 
boundary and the flow changes character, slowing appreciably. The dynamics of this 
stage are modelled by reducing the problem to a single nonlinear diffusion equation. 
For a spreading monolayer strip or drop, the transition from an inertia-dominated 
(boundary-layer) flow to a viscosity-dominated (thin-film) flow is predicted to be 
largely complete once t = 857’. 

1. Introduction 
The spreading of surface-active material over the free surface of a viscous fluid layer 

through the action of surface-tension gradients may occur in widespread contexts. 
During the later stages of the spreading of an oil slick on the sea, for example, the 
oil forms an ultra-thin layer (a monolayer), the thickness of which determines the 
local surface tension; a gradient in surface tension is distributed across the length 
of the slick, and this stress induces a viscous flow in the fluid beneath, which drives 
the spreading of the oil (Hoult 1972; DiPietro, Huh & Cox 1978). Alternatively, 
the surface-active material may be a surfactant which adsorbs at the fluid’s free 
surface to form a monomolecular layer; the surface tension is then inversely related 
to the local surface concentration of surfactant. Thus a monolayer, be it an organic 
surfactant, a film-forming organic liquid, or an aqueous surfactant solution on an 
oil phase (Joos & van Hunsel 1985), will spread spontaneously until concentration 
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gradients are eliminated. Monolayer spreading has long been of central importance 
in surface chemistry (see, for example, Karkare, La & Fort 1993) and such flows also 
have important applications in industrial and biological contexts, where frequently 
the substrate fluid is very thin. Much fluid-dynamical work in recent years has been 
motivated by interest in the role played by surfactant in lung mechanics, for example 
(Grotberg 1994). 

Theoretical investigations of monolayer spreading have concentrated predomi- 
nantly on insoluble surfactants, and the majority are long-wavelength approxima- 
tions, i.e. it is assumed that the longitudinal lengthscale of variation of the monolayer 
greatly exceeds the characteristic depth of the flow (where this depth is the typical 
distance over which vorticity, created by shear stresses at the free surface, penetrates 
by the action of viscosity). Such studies fall into two distinct classes: the ‘thin-layer’ 
theories, in which lubrication theory is used to derive a pair of coupled evolution 
equations for the flow; and the more complex ‘deep-layer’ theories, in which the 
surfactant transport equation is coupled to an unsteady viscous boundary-layer flow. 
Two features of both classes are worth emphasizing. The first is that, in general, the 
fluid velocities parallel to the free surface are spatially nonuniform. For thin fluid 
layers, the fluid’s incompressibility therefore demands that there is deformation of 
the free surface, so that typically the fluid surface is elevated towards the front of 
the advancing monolayer, and depressed upstream of this (Borgas & Grotberg 1988; 
Gaver & Grotberg 1990; Troian, Herbolzheimer & Safran 1990). The possibility 
of surface deformation in deep-layer flows, arising through this mechanism, will be 
considered below. The second important feature of both the thin-layer and deep-layer 
cases is that unsteady flows, in which there is a dominant balance between viscous 
forces and surface-tension gradients, are asymptotically self-similar at large times. In 
the thin-layer situation, for example, Jensen & Grotberg (1992, hereinafter referred to 
as JG) showed that a dilute planar monolayer strip, containing a fixed mass of surfac- 
tant, spreads like t1/3 (see also Espinosa et al. 1993), an axisymmetric monolayer drop, 
also of fixed mass, spreads like t ’ /4 (confirming the numerical predictions of Gaver & 
Grotberg 1990), while a monolayer spreading from a line or point source of constant 
surfactant concentration (which we call here a planar or axisymmetric ‘front’) spreads 
like t1/2 (consistent with Ahmad & Hansen 1972). The deep-layer analogue of the 
planar front solution was determined by Foda & Cox (1980), who showed that a 
monolayer fed from a source of constant concentration spreads like t3/4 (see also 
Hoult 1972; Joos & Pintens 1977). The aim of the present paper is to describe two 
important cases of the deep-layer problem that have not yet been investigated, namely 
the spreading of a planar monolayer strip or an axisymmetric drop, and to provide a 
simple account of how, in the presence of a solid boundary beneath the fluid layer, 
these flows evolve at large times into the corresponding thin-layer flows described in 
JG. The effects on these deep-layer flows of surface contamination by low levels of 
pre-existing surfactant, which is likely to be important both experimentally and in 
practical applications, will also be considered. 

The appropriate scalings for the deep-layer flows are readily determined, as follows. 
Suppose a spreading, insoluble monolayer is localized, having length L( t )  at time t and 
that the total mass of surfactant (or oil) is M .  Let the underlying fluid have constant 
density p and constant viscosity p. For simplicity, we assume that the monolayer is 
sufficiently dilute for physico-chemical nonlinearities in the relation between surface 
tension cr and the surfactant’s surface concentration r to be unimportant, so that 
surface activity is represented by a single parameter A = -da/dT (> 0). Then, 
writing ‘-’ for ‘scales like’, the horizontal coordinate x - L, the horizontal velocity 
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u - L l t ,  and r - MIL", say, where where n = 0 for a front, n = 1 for a strip and 
n = 2 for a drop. A horizontal momentum balance, puu, - puz, (where subscripts 
denote derivatives), implies that the downward vertical coordinate z - ( ~ t ) ' / ~ ,  where 
v = p / p  (representing downward diffusion of vorticity), and then a tangential stress 
balance at the free surface, pu, - 0, = -AT,, implies that 

Thus (1.1) recovers the t3/4-scaling for a front, and shows also that a planar strip 
spreads like t'/* and an axisymmetric drop like t3I8. The corresponding self-similar 
solutions for the two fixed-mass monolayer configurations of the unsteady, two- 
dimensional boundary-layer equations, allowing for surface deformation, are deter- 
mined numerically in $3 below. 

The first investigations of surfactant spreading over deep layers in which the fluid 
mechanics was treated fully considered the steady advance of a localized, insoluble 
monolayer against a uniform stream. In this case, the monolayer acts as a rigid 
plate along its length, and the flow beneath the monolayer is a Blasius boundary 
layer (Harper & Dixon 1974; DiPietro et al. 1978). The surfactant distribution 
necessary to support the viscous shear stress is therefore proportional to d2, where 
x is the distance from the leading edge of the monolayer. This flow configuration 
was re-examined in the zero-Reynolds-number limit by Harper (1992). In unsteady 
spreading, however, the monolayer acts as a rigid plate only at its leading edge. Foda 
& Cox (1980) showed that for a spreading planar front, for example, the surfactant 
distribution has a Blasius structure locally, but they had to compute the boundary- 
layer flow numerically over the remainder of the monolayer, patching this to a further 
inner region near the stationary source of surfactant. They assumed that the length 
of this inner region grew at the same rate as the full monolayer, but found that the 
region was then sensitive to the form of the nonlinear equation of state chosen, a 
restriction that was reconsidered by Dagan (1984). It will be shown in $3.2 below 
that the fixed-mass solutions also have the local Blasius structure at the leading edge, 
where a range of singular effects may manifest themselves. The unsteady stretching 
flow at the midpoint of a strip or a drop may also exhibit a distinct inner region, 
if surface deformation is taken into account. Evidence will be presented in $3.1 
suggesting that this inner region is unsteady relative to the spreading monolayer, and 
is instead steady in the laboratory frame. 

There have been numerous reports of a slight rise in the free surface at the leading 
edge of an advancing monolayer on deep fluid, the so-called 'Reynolds ridge' (e.g. 
Mockros & Krone 1968; McCutchen 1970). The ridge was modelled by Harper 
& Dixon (1974), who examined the transition between a uniform flow state and 
a rigid monolayer. The advancing monolayer causes downward displacement of 
the oncoming fluid; this displacement generates a nonuniform pressure distribution 
beneath the leading-edge boundary layer through inertial effects. The free surface 
responds by adjusting its shape so that the pressure field can be supported by 
gravitational and surface tension forces. Harper & Dixon showed that there is an 
elevation of the free surface at the monolayer's leading edge, with a weaker depression 
beyond, predictions that were verified experimentally by Scott (1982). 

With the exception of Harper & Dixon (1974), however, in all theoretical deep- 
layer studies it has been assumed that the free surface remains flat. Harper (1992) 
showed that this assumption is consistent with the surface boundary conditions for 
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a deep layer in steady Stokes flow. This is also a realistic assumption for large oil 
slicks, for example, for which gravity provides a strong restoring force. In this case, 
an irrotational flow with finite vertical velocity is induced beneath the boundary 
layer, such that fluid is displaced downwards beneath the advancing monolayer's 
rigid leading edge, and is drawn upwards beneath regions of the monolayer where 
there is longitudinal stretching of the free surface (e.g. figure 3 4  below). For much 
smaller monolayers, however, the effects of gravity are substantially weaker, and in 
the absence of this or other restoring forces there is no mechanism for the generation 
of vertical motion beneath the boundary layer. Instead, it will be shown below that 
the nonuniform horizontal velocity may, via a mechanism quite distinct from that 
producing the Reynolds ridge, generate significant free-surface deformation (figure 
3b, below), which grows (in the vertical direction) asymptotically like ( ~ t ) ' / ~ ,  while 
all disturbances to the fluid far beneath the monolayer are exponentially small. The 
Prandtl transformation of the unsteady boundary-layer equations is used (in $2) to 
show the direct correspondence between flows in which the free surface either remains 
flat or deforms freely. 

The deep-layer scaling law (1.1) is valid provided the monolayer is spreading over 
a clean interface. Contamination of the interface by a weak, uniform distribution of 
surfactant of concentration T,, say, is a potentially common situation, however, and 
is of interest because it can significantly influence spreading rates. For example, the 
surfactant concentration at the midpoint of a spreading strip or drop diminishes like 
t-'/2 or tW3I4 respectively, and so will ultimately fall to a level comparable with the 
level of contamination. In this case, the boundary-layer equations may be linearized, 
as outlined in $4 below, where it is shown that the spreading flow is again self-similar, 
with 

for both the strip or the drop. In (1.2), S ,  = AT, is the surface-tension difference 
between a clean and a contaminated interface. Flow disturbances now spread at a 
rate determined by the degree of contamination, although the distance travelled by 
the deposited monolayer remains dependent on its strength M (Grotberg, Halpern & 
Jensen 1995). 

Finally, a heuristic model will be used to explore the link between the deep-layer 
and thin-layer results by considering the spreading of a monolayer over a fluid layer 
of finite depth. A simple approximation is used to reduce both problems, and the 
intermediate finite-depth case, to a single nonlinear diffusion equation ((5.3) and (5.7) 
below). This is used to examine the transition between the high-Reynolds-number, 
boundary-layer flow, in which a monolayer strip, say, spreads like and the low- 
Reynolds-number thin-film flow, in which a strip spreads like t ' /3 .  In this simple 
model, spreading remains self-similar although the monolayer length L(t) satisfies a 
nonlinear ordinary differential equation. It is shown how inertial effects are ultimately 
confined to a shrinking inner layer at the monolayer's leading edge. 

2. The model for a monolayer spreading over deep fluid 
Consider a monolayer lying on the initially horizontal free surface of a deep layer 

of fluid. Coordinates (x, z )  are defined with x horizontal, z increasing downwards into 
the fluid and the free surface at z = h ( x , t ) ;  the corresponding velocity components 
are u(x, z ,  t )  and w ( x ,  z ,  t). Gravity g acts in the z-direction. The surfactant is assumed 
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dilute and insoluble, having constant surface diffusivity D. The surface tension of the 
interface when uncontaminated is 00. 

To make the boundary-layer approximation, we introduce a horizontal lengthscale 
LO, a vertical lengthscale €150 where e << 1, a velocity scale Uo = AToe/p, where To is 
a scale for the surfactant concentration and A is the surfactant activity, a Reynolds 
number Re = pUoLo/p, a gravitational parameter B = egLo/Ui,  a diffusive parameter 
9 = D/UoLo (an inverse PCclet number) and a capillary parameter Y = eao/pU,&. 
We let o = aoa(r), where r = r (x, t). Since we are interested in the large-Reynolds- 
number limit, we set Re = B/e2 ,  where B = 0(1) or larger. Nondimensionalizing, 
by scaling x on LO, z and h on €LO, t on Lo/Uo, u on Uo, w on EUO, r on To, and 
p on pUi, and neglecting terms that are O(e2)  or smaller, the mass-conservation and 
Navier-Stokes equations reduce to the boundary-layer equations, 

aXu + w, = 0, (2.1) 

ut + uu, + wu, = - p x  + B-lu,,,  (2.2) 

0 = -pz + B, (2.3) 
where a,u = u, in a planar geometry and d,u = x-l(xu),  in an axisymmetric geometry. 
The corresponding leading-order boundary conditions at the free surface z = h(x, t ) ,  
(where u,(x, t )  = u(x, h, t )  etc.), are 

h, + u,h, = ws, rt + a,(u,r) = gaxrx, uz = rx (2.4) 

p = Y 6 ( r ) h x x .  (2.5) 

and 

These are respectively the kinematic condition, the surfactant transport equation, 
and the tangential and normal stress conditions. Appropriate boundary conditions 
at z + co are also required, and are given below. In addition the parameter M ,  
representing either the total mass of surfactant in the monolayer, or the surfactant 
concentration at a source, has a nondimensional equivalent A', where 

M = &roL;f. (2.6) 

The cases of a spreading monolayer front, strip or drop correspond to n = 0, 1 or 2 
respectively; intermediate values of n represent a range of source strengths. 

Combining (2.3) and (2.5) gives the pressure in the boundary layer 

P(X,Z, t )  = B(z - h) + Ya(T)hXx,  

and so (2.2) becomes 

ut + UU, + W U ,  = Bh, - Y { 8 ( r ) h X x } ,  + B-'u,,. (2.7) 

Deflection of the free surface from the horizontal generates a pressure field that 
is transmitted instantaneously through the boundary layer, driving an irrotational 
inviscid (outer) flow at depth. This flow couples back to the boundary-layer flow 
through the boundary condition u + u,(x, t ) ,  say, as z + co, where u, is the solution 
of the outer problem evaluated at the free surface. We shall concentrate largely 
on cases in which such interactions are unimportant. Making such an assumption 
(justified more fully in 92.2 below), (2.7) reduces to 

(2.8) 

In allowing the free surface to deform, we impose the condition (readily verified a 

ut + uu, + wu, = B-lu,,.  
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posteriori) that the vorticity generated at the free surface decays exponentially beneath 
the boundary layer (Goldstein 1965), and that there is no downward displacement 
of fluid beneath the boundary layer. The remaining boundary conditions for the 
simplified problem (2.1), (2.4) and (2.8) are therefore 

u + 0, w + 0 exponentially as z -+ co. (2.9) 

The kinematic condition in (2.4) is now equivalent to h, = &q, where the flow rate 
q(x, t )  = JT u dz. 

2.1. Self-similar solutions 
Balancing terms in equations (2.1), (2.4) and (2.8) with 9 = 0, following the scaling 
arguement used to derive (l.l), one finds that 

z - ( t / W )  l I 2 .  (2.10) 

An important condition of self-consistency is that the boundary layer is thin, i.e. 
z << x. This condition is met for a front ( n  = 0), strip ( n  = 1) and drop (n = 2) 
provided 

respectively. For the typical parameter values given in $2.2 below, it is only at 
extremely large times for the drop flow that the boundary layer might grow too thick 
for the long-wavelength theory to be valid. In this case, because the flow is continually 
slowing, its effective Reynolds number (which is proportional to LL, - t-'l4) is 
continually diminishing, so that at sufficiently large times a Stokes flow can be 
anticipated: in this case, vorticity penetrates a depth of (at least) the order of the 
monolayer length (Lister & Kerr 1989), and repeating the scaling argument of $1 
with z - L implies that L - ( A M ~ / P ) ' / ~ ,  i.e. the spreading rate changes from t 3 I8  to 
t1/3. 

t >> ( W A y ,  ( W A ) 2  >> 1, t << W 3 A 2  

We incorporate the scaling (2.10) by defining new independent variables 

and new variables dependent on 5 ,  y~ and z (chosen using the scaling arguments given 
in $1) 

r ,  4 n 1/[2(n+2)1 
4, G = ( t 3 " / A  92 ) H = (W/t)1'2 h, Q = ( W t n - l / A 2 )  1/[2(n+2)1 

u = (Wt2"+1/A2)1/[2(n+2)' u, w = ( 9 t ) ' / 2 W *  

Then (2.1), (2.8), (2.4) (with 9 = 0) and (2.9) become respectively 

atu+ w,, =o, (2.11) 

(2.12) 

U + 0, W + 0 exponentially as q + co. 
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The kinematic condition can be written in terms of the transformed flow rate Q as 

( H ,  = a,Q where Q(5,z) = U ( t , q , z )  dq. (2.13) 

We shall later seek solutions that are independent of z, but it is helpful to retain the 
time-dependent terms at this stage. 

i 3 
2(n + 2) 

zH, + ;H - ~ 

H ( t 4  

2.2. Diflusion, gravity and capillarity 
Before proceeding further, it is important to establish the importance of these three 
effects, so that we know the conditions under which each may be justifiably neglected. 
We therefore return briefly to the full boundary-layer equation (2.7) and the surfac- 
tant transport equation in (2.4), and re-write them in transformed variables, giving 
respectively 

(For convenience we have set 3(r) = 3(0) = 1.) Diffusivity, gravity and capillarity 
are now represented by the time-dependent quantities 

Each of 4, 3 and 9 must remain small for the corresponding forces have a weak 
effect relative to the basic flow or to be confined to narrow regions of the flow. These 
three effects become significant at times T9, T g  and Ty,  when 6, 3 and & are each 
O( 1). These timescales are given in table 1, along with conditions for each to be large; 
it is then straightforward to determine which of the three timescales is the smallest 
for a particular flow. 

Table 1 can be used to predict the sequence of events. For a front, diffusive and 
capillary effects both diminish relative to the strength of the flow (because 6 and 9 
are diminishing functions of time with n = 0), and so can be expected to be confined 
to shrinking boundary layers at the monolayer's leading edge (see $3.2 below); gravity 
will ultimately dominate at a time of O( T g ) .  For a strip, either gravity or capillarity 
will be the first to dominate at large times, although gravity will always dominate 
ultimately. The effects of diffusion are steady in the frame of the spreading strip. 
For the slower-spreading drop, any of the three effects may be the first to dominate, 
depending on a delicate balance of parameters, although gravity will again dominate 
ultimately. 

Parameter values appropriate for a typical surfactant spreading on water are 
as follows, to the nearest order of magnitude: g x; lo3 c m ~ - ~ ;  p NN 1 gcmP3; 
p = cm2sP1. If we assume 
c = lo-', LO GZ 1 cm, then UO x; lo2 cms-' and Re x; lo4. (At such large Reynolds 
numbers the flow may experience instabilities, at least early during spreading, but 
these are beyond the scope of the present study.) The nondimensional parameters 
then take the following values: 92 x; 100; 9 x; lop2; 9' x; and A x; 1. 
Thus, even for a relatively large monolayer, with L x; 1 cm, gravity is weak. For much 

cm-ls-'; CT x; 100 gs-2; ATo NN 10 gs-2; D = 

9 = 
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Front Strip Drop 

T9 9 2  - 9 - 4  

T9 414 ( A 4 9 / 4 6 )  lI9 ( A 2 9 / 4 4 )  

TY 9 2 9 1 ~ 4  ( A ~ / Y ~ w )  1'3 A/Y 

T y  >> 1 - Y << (A8/?2y6 Y < A  

T9 >> 1 - 9 < < 1  9 < 1  
T9 >> 1 4 <<A 4 << (A49)1'6 4 << (A29)1'4 

TABLE 1. Timescales for diffusion, gravity and capillarity to significantly influence the flow. 

smaller monolayers, gravity becomes even weaker, while diffusion and capillarity are 
relatively more significant. For &! to be O( 1) or larger we need L >> lop2 cm, which 
guarantees that 9 << Y << 1; for 9 << 1 we need L << 100 cm. Our theory allowing 
for free-surface deformation is therefore appropriate for lo-* cm << L << lo2 cm 
(over appropriate time intervals, of course). 

2.3. Prandtl transformation 
We now return to the basic flow of 52.1, neglecting gravitational, diffusive or capillary 
effects. Restricting attention for the present to a planar geometry, we can introduce 
a stream function y((,q,z), where U = y,,, W = -yg to satisfy (2.11) automatically. 
Then (2.12) becomes 

supplemented by the boundary conditions 

y + 0 exponentially as v]  + co. (2.17) 
Note also that Q(5,z) = -tp(t,H,z), so that the kinematic condition can be written 

This set of equations can be converted from a free-boundary to a fixed-boundary 
problem via the Prandtl transformation, a symmetry of the unsteady boundary-layer 
equations (Ma & Hui 1990), by defining new variables X = 5 ,  Y = q - H (  5 ,  z), T = z 
and introducing a new stream function 

zH7 + ;w - [3/(n + 2)15Hr) = ( - W ( 5 ,  H ,  7))c. 

(2.18) 
This choice of integral ensures that Qi -+ 0 as X + co, i.e. far ahead of the monolayer 
the fluid is undisturbed. Under this transformation (2.15) is invariant, i.e. 

3 
2(n + 2) 

T @ T  + @Y @XY - @ x Q i y y  = Qiy y y + ~ 
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The kinematic boundary condition becomes GX(X,O)  = 0, which we can therefore 
replace by @(X,O) = 0. Thus the boundary conditions (2.16) and (2.17) become 

(nG + X G x )  + [@yGIx = 0 on Y = 0, (2.20) 

@ Y Y  = G x  

T G T  - ~ 

2(n + 2) 

X 

@ -+ Q K T )  = 1 { THT +; (. - rHt)} d t  exponentially as Y + 00. 

00 

(2.21) 
Thus the original problem (2.15)-(2.17), for which the free surface deforms while 
the flow generates no vertical displacement of fluid beneath the boundary layer, is 
completely equivalent to the transformed problem (2.19)-(2.21) in which the free 
surface is constrained (for example by gravity) to remain flat. 

A similar formulation can be undertaken for an axisymmetric geometry. In this 
case, the stream function w(< ,q ,z )  is defined by U = yq/c ,  W = --yt/r. Again, the 
Prandtl transformation may be employed, defining X = x, Y = q - H ( t , z ) ,  T = z 
and 

m 

The momentum equation is now 

3 
X@XY +;Y @ Y Y  + 1 @$ 

T @ T + - ( @ Y @ X y  - @ x @ y y ) - -  = @ y y y + -  
X X2 2(n + 2) 

(2.22) 
and the boundary conditions become 

@ = O  

(nG + X G x )  + x 1 [@Y GIx = 0 on Y = 0, (2.23) TGT - ~ 

2(n + 2) 
@ y y  = X G x  

3 
2(n + 2) 

@ + X Q ( X ,  T )  = THT + ;H - -<If:) d< exponentially as Y + 00. 

(2.24) 
m 

2.4. Statement of the self-similar strip and drop problems 
Solutions of (2.19)-(2.21) or (2.22)-(2.24) that are independent of T are similarity 
solutions of the unsteady boundary-layer equations describing the spreading of an 
insoluble monolayer. The T-independent solution of (2.19)-(2.21) with n = 0 was 
essentially that computed by Foda & Cox (1980), for example. In $3 below we seek 
the complementary similarity solutions for a strip, i.e. (2.19)-(2.21) with n = 1, and 
for a drop, i.e. (2.22)-(2.24) with n = 2. These problems are simplified by the fact 
that in each case the surfactant distribution decouples from the flow. Assuming 
T-independence, the surfactant transport equations in (2.20) and (2.23) become 

[(@Y - i X ) G ] x  = 0 (strip), [ ( @ Y  - ;X2)G] ,  = 0 (drop) on Y = 0. 
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Thus ahead of the monolayer, G = 0 and the fluid is completely undisturbed, while 
beneath the monolayer there is a linear stretching flow of finite extent with surface 
velocity Us = i X  (strip) or Us = i X  (drop), i.e. us = [3/2(n + 2)](x/t) in the original 
variables. This is very similar to the unsteady spreading of an oil slick, driven by a 
balance between a hydrostatic pressure force, arising from the nonuniform thickness 
of the slick, and viscous forces in the fluid beneath. In this case, after transformation 
into suitable similarity variables, Hoult (1972) showed that the oil continuity equation 
is satisfied by a velocity field of the form us K ( x l t ) .  Hoult hypothesized that the 
leading edge of the advancing slick pushes fluid ahead of it, generating a region of 
reversed flow at depth; Buckmaster (1973) showed that this is not in fact the case, 
and that the flow is everywhere forward. Buckmaster’s results (for a planar horizontal 
slick) carry over directly to the present problem. 

We assume that the monolayer lies in 1x1 d 1. The strip problem is then as follows: 

(2.25) @Y@XY - @X@YY = @ Y Y Y  + ; [X@X + Y @ Y l Y  ; 

@ = O ,  @y=;X,  @yy=Gx o n Y = O ,  O < X < l ;  @ = O ,  X > 1 ;  

@ = O ,  @ x = @ x x x = . . . = O  for X=O,  Y 2 0 ;  

(2.26) 

FX 

@ + Q(X) = l-- H dX - $XH exponentially as Y + co; (2.27) 

with Q(l)  = 0, H(l)  = 0, G(l)  = 0, and @(1,0) = 0. We also assume Q(0) = 0, 
which ensures that Ji H dX = 0. The total mass of surfactant in the monolayer is 
Af = J’, G dX. The drop problem is, similarly, 

@p’y (2.28) 
1 

X X - (@Y@XY - @ X @ Y Y )  - --y = @ y y y  + iX@xy + i Y @ y y  + $@y, 

@ = O ,  @ y = i X 2 ,  @yy=XGX o n Y = O ,  O < X < 1 ;  @ = O ,  X > 1 ,  
(2.29) 

@ -+ XQ(X) = XH dX - iX2H exponentially as Y -+ co. (2.30) 

The condition Q(0) = 0 ensures that Ji XH dX = 0. The total mass of surfactant in 
the monolayer is Af = 27t $ XG dX. 

3. A spreading monolayer strip or drop over deep fluid 
The structure of the self-similar flow beneath a spreading monolayer is determined 

below by considering the neighbourhood of the origin, where there is an unsteady 
stretching flow ($3.1), and the leading edge, where there is a Blasius boundary layer 
($3.2) and which is the most likely place for singular effects (e.g. surface diffusion, 
capillarity or surface contamination) to manifest themselves. The flow at the origin 
in the flat-surface formulation is considerably simpler than that in the front problem 
(Foda & Cox 1980; Dagan 1984). However, if free-surface deformation is permitted, 
the downward displacement of the interface is accomplished through the development 
of an inner layer, which shrinks relative to the monolayer, across which the similarity 
solution adjusts to symmetry boundary conditions ($3.1.1). Full numerical solutions of 
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the self-similar strip and drop problems, (2.25)-(2.27) and (2.28)-(2.30), are presented 
in $3.3. 

3.1. Structure at the origin: an unsteady stretchingflow 
In the neighbourhood of the origin for the strip and drop problems, in their flat-surface 
formulations, the flow has a saddle-point structure, being driven by a horizontal 
surface velocity us = ax / t  for some constant a. It therefore falls into the class of 
boundary-layer flows on flat stretching surfaces, where the fluid is otherwise at rest. 
Although such flows have a fairly extensive literature (Stuart 1966; Bratukhin & 
Maurin 1967; Crane 1970; Wang 1971, 1984; Kuiken 1981; Banks 1983; Banks & 
Kuiken 1986; Surma Devi, Takhar & Nath 1986; Rajeswari, Kumari & Nath 1993; 
Smith 1994), to the author’s knowledge the only directly relevant study is that due to 
Buckmaster (1973). 

We may seek a series expansion of the flow in the neighbourhood of the origin. 
For the strip, symmetry conditions imply that U ,  G and H are even functions of X 
while @I and Q are odd in X. We therefore pose expansions 

@ = A  2g0( y )X + OW3), Q(x) = iQox + OW3), 

H(X) = HO + O(X2), G(X) = Go + G1X2 + O(X4). 
On substituting these expansions into (2.25)-(2.27), we recover at leading order the 
problem 

with boundary conditions 
g;: - gog; = 2gr + 2g; + yg;, (3.1) 

go(0) = 0, g;(O) = 1, go(Y)  + Qo exponentially as Y + 00, (3.2) 

where g i ( 0 )  = 4G1 and Qo = Ho. Go is undetermined at this stage, being related to 
the total mass of surfactant in the monolayer. This problem falls into the class of 
‘unsteady separated stagnation point (USSP) flows’ (Ma & Hui 1990), and it can be 
considered a time-dependent generalization of the classical Hiemenz (191 1) solution. 
The USSP flows can exhibit reversed flow and algebraic decay of the velocity field 
outside the boundary layer: go is no exception, and can take the form 

for some constant CO. We must however impose exponential decay of the flow beneath 
the boundary layer (Goldstein 1965; Buckmaster 1973). The leading-order problem 
therefore has a unique solution, namely that for which CO = 0, which is the entirely 
forward flow for which there is the smallest total flow rate. This solution is shown 
with solid lines in figure 1 ;  it is given by GI NN -0.05215, so that Qo = HO = 1.3422. 
As Buckmaster (1973) found, a series of problems can be formulated at higher orders 
in X, but each contains an undetermined constant. It is not possible to construct 
a solution by advancing in the positive X-direction, a consequence of the parabolic 
nature of the governing equations. 

A similar argument may be followed for the drop case. Setting d, - i go (Y)X2 ,  
Q - iQoX at leading order in X, with H and G as above, yields 

l y  ff f ( g f  - 2gogo”) = g r  + 8; + 3 go,  

with the same boundary conditions as the strip case but with g;J(O) = FG1. The unique 
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FIGURE 1. The flow at the origin, showing the function go(Y) and its derivatives for a strip (-) 
and a drop (--); gb(Y)  shows the profile of the horizontal component of velocity. 

solution exhibiting exponential decay is given by Qo = ;Ho = 1.1842, GI = -0.04984, 
and is shown by dashed lines in figure 1. 

3.1.1. Unsteady inner layer at  the origin 
Having determined the nature of the flat-surface problem near the origin, we can 

consider how it transforms to the deforming-surface problem. The full solution giving 
Q ( X )  will be determined in $3.3 below. From this, we can determine the corresponding 
T-independent free-surface shape H ( X ) ,  which comes from integrating the steady 
version of the kinematic condition (2.13), 

X 

The contribution to H from the upper limit of integration at X = 1 is of the 
form H = AOX(n+2)/3,  for some constant A0 # 0, so that after solving the complete 
problem we have H = HO + AOX(n+2)/3 + O ( X 2 )  near the origin. Because HO > 0, 
the free surface will be displaced downwards at the origin. However, this solution 
fails to satisfy the symmetry condition H x ( 0 )  = 0 that applies for the strip and drop 
configurations; it is of course to be expected that a similarity solution might fail at 
one end of its domain. Exactly this behaviour was observed by JG for similarity 
solutions of the analogous thin-film problems. In that case, numerical solutions of 
the full, unsteady equations exhibited an unsteady inner layer at the origin, across 
which solutions adjust to the symmetry boundary conditions; the observed scaling of 
this inner layer was supported by theoretical arguments. We hypothesize that in the 
present case an unsteady inner layer exists also, and use similar reasoning to establish 
its magnitude. 

We therefore return to the time-dependent kinematic condition, h, = &q, which in 
transformed variables is given by (2.13), 

3 
a,yQ = T H T  + H - ~ ( n + 2  

Integrating this equation to find H ( X ,  T )  for a given Q ( X ) ,  again imposing the 
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boundary conditions H (  1, T )  = 0, Q( 1) = 0, we have now an additional contribution 
to H ,  

Transforming back to the original variables, the complementary function h is a 
function of x alone, i.e. it represents a steady film shape, as would be expected from 
integrating h, = d,q. The symmetry condition for a strip (with n = 1) can now be 
satisfied provided h satisfies 

h'(0) = -&(< 0), h(co) + 0, h(0) < 0 and h dx = 0. 

Likewise, for a drop we require &' - -$Aox as x + 0, h(x)  + 0 as x + co, h(0) < 0, 
and xh dx = 0. Thus in the frame of the monolayer, an unsteady boundary layer 
exists at the origin, which (according to (3.3)) shrinks in magnitude like T-'l2 for a 
strip, and T 3 l g  for a drop. The form of h cannot be determined directly, but must 
be deduced from a solution of the full time-dependent initial-value problem. 

3.2. Structure a t  the leading edge 
It is straightforward to follow Buckmaster (1973) or Foda & Cox (1980) to establish 
the Blasius boundary-layer structure at the monolayer's leading edge. Here, we extend 
this analysis briefly to consider additional singular effects such as diffusion, gravity, 
capillarity and surface contamination. 

We make the following expansion about the leading edge at X = 1. Suppose 
that B << 1, and rescale as follows: X = 1 + 22, Y = E Y ,  @ = E 4, G = E G, 
H = B l f 2 H  and Q = B l f 2 Q .  This choice o f  scaling ensures an appropriate leading-order 
balance of viscous and Marangoni forces; the lengthscale B must be chosen to include 
singular effects at this order. To leading order (2.25) and (2.28) become 

i 0 

4 1 2  A A t / 2 A  ^ 1 / 2  A 

subject to 

where surface diffusion 6 (see (2.14)) has been re-inserted into the surfactant transport 
equation. If it is assumed that H + 0, 6 + ern and Q -+? as 8 + co, then we 
can integrate the boundary-layer equation with respect to Y and 8 to derive the 
momentum integral equation 

m 
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Since 6 2 
We consider first the limit in which 3 = ,? and &, = 0. T h y  the surfactant 

transport equation has the following solution: G = 0 for X > 0 and 4~ = 3/[2(n  + 2)] 
for 8 < 0. For 8 > 0, the fluid is undisturbed, while for 8 < 0, ,we recove; the 
Blasius boundary-layer solution. Defining y = P/(-8)'I2, and letting G = ~ o ( - X ) ' / ~ ,  
Q = Qo(-8)1/2,  I? = fio(-8)1/2, 0 = ( -8)1/2$o(y) ,  we obtain for 8 < 0 

Q 2 0 so that H < 0, i.e. the free surface is elevated over this region. 

A h  A 3 A  
4040YY = 24OYYV + Y 4 o y y ,  (3.5) 

while the boundary conditions become J0 = 0, Joy = 3/[2(n + 2)] and pay, = -$&o 
on y = 0, with do + QO = -3&/[2(n + 2)] as y + 00. Putting 40 = $+(3y/[2(n+2)]) 
yields the Blasius problem for 4, i.e. ~ y y y  = $@,,,,, with 4 - o(y )  as y + 0 and 

4+(3y/[2(n+2)]) -, QO as y + 00. Thus fi0 = -2 [(n + 2) /3]  1'2 p1 where p1 = 1.21678 
(Van Dyke 1975). Thus the free surface is displaced upwards, and has infinite gradient 
at X = 1. The corresponding value of 60 is $ [3 / (n  + 2)] 3/2 a1 where a1 = 0.46960. 
There is a singularity in the shear stress at the leading edge of the monolayer, and 
correspondingly an infinite vertical velocity. The film deformation at the leading edge 
is slightly more severe for the drop, although the shear stress is weaker; the velocity 
field decays exponentially as y + co, as required. 

3.2.1. Inner layers at the leading edge 

becomes 
If we re-introduce the pressure gradient in the momentum equation (see $2.2), (3.4) 

We can now identify the lengthscales over which weak, singular effects operate by 
choosing values of 2 making the appropriate terms in the governing equations O( 1). 
Evidently, the diffusive, gravitational and capillary lengthscales (n? = X,, X ,  and Xy 
respectively) are given by 

x, = G, x, = 3-2, x, = $ 4 3 .  

Provided 4 << 1, diffusive effects are confined to a thin inner layer which grows at 
the same rate as the monolayer for a strip, while it shrinks for a front and grows 
for a drop. For &' << 1, capillary forces also operate over a thin region, which 
shrinks relative to the monolayer for a front but grows for a strip or drop. Xg is not 
small, however, even for << 1, indicating that gravitational effects are not confined 
to the leading edge, but act as an unsteady regular perturbation over a substantial 
proportion (if not all) of the monolayer. These findings are all consistent with the 
observation (in $2.2) that a front can be dominated in finite time by gravity, a strip 
by gravity or capillarity and a drop by all three effects. The capillary boundary 
layer at the leading edge will behave in a quasi-steady manner, via a viscous-inviscid 
interaction: the curvature of the free surface generates a pressure gradient, which 
is transmitted through the boundary layer and drives an irrotational flow at depth, 
which in turn is coupled to the boundary;layer flow. It is likely that a weak wavetrain 
will be generated in the free surface in X > 0, in a manner similar to that identified 
in JG for monolayers on thin films. 

A further potentially significant mechanism by which the singularity at the lead- 
ing edge could be smoothed is through surface contamination of the undisturbed 
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interface. Suppose, ahead of the advancing monolayer, there is a uniform monolayer 
of some low, dimensional, concentration Tm. The corresponding, nondimensional, 
scaled concentration is (from $2.1) G, = ( t 3 n / 4 4 B ? n )  1/[2(n+2)1 (Tm/To). Imposing the 
condition that 6 + 6, = 1 as 2 + 00, we require that 8 = G i ,  so that the lengthscale 
over which the contaminant operates is 

Thus for a strip or a drop, this sublayer grows with respect to time, and the effects of 
the contaminant may dominate the complete flow at sufficiently large times (see $4 
below). While the inner layer remains small relative to the length of the monolayer, 
it behaves quasi-steadily (see JG, who found its thin-layer analogue). Its structure 
in the deep-layer case is essentially that determined by Harper & Dixon (1974), who 
computed the flow for a monolayer advancing against a steady stream (corresponding 
to the case n = -;) using a momentum-integral approximation. The same method 
can readily be extended to unsteady monolayer spreading (i.e. other values of n),  and 
it can be used to determine the structure of the diffusive sublayer also. 

3.3. Full numerical solution 
To obtain a numerical solution of the strip and drop problems, the governing equations 
(2.25)-(2.27) and (2.28)-(2.30) were recast in rescaled coordinates before being solved 
by a finite-difference method, marching from the leading edge towards the origin. For 
details, see Appendix A. 

The solution of the strip problem is shown in figures 2(a) and 3. Figure 2(a)  shows 
that the surfactant distribution G ( X )  diminishes monotonically across the monolayer, 
such that the shear stress at the free surface -Gx increases from zero at the origin to 
a singularity at the leading edge. The instantaneous flow rate Q ( X )  increases roughly 
linearly across the upstream 75% of the monolayer, and also has the anticipated 
singular form at X = 1. The displacement thickness 6 ( X )  = Q / U ,  where Us = : X ,  
a measure of the depth to which vorticity penetrates downwards into the fluid, is 
roughly uniform over the upstream half of the monolayer, decreasing rapidly near 
the leading edge. This is evident also from the stream-function distribution in figure 
3(a), which shows the flow in its flat-surface formulation. There is a concentrated 
downward flow near the leading edge at X = 1, and an upward flow generated by the 
stretching free surface over the upstream 75% of the monolayer. When reformulated 
to allow displacement of the free surface, (figure 3b), we see that the free surface is 
displaced downwards over 0 < X < 0.427, and upwards further downstream. Note 
that H ( X )  is linear as X + 0, requiring an unsteady boundary layer to match to 
the symmetry boundary conditions ($3.1.1). The spreading monolayer drop has a 
very similar distribution (figure 2b). Again, the displacement thickness 6 is almost 
uniform over the upstream half of the monolayer. The free-surface displacement is 
now more nonlinear, with a greater depression at the origin and a weaker elevation 
towards the leading edge. The value of 4 corresponding to each flow is as follows: 
for the strip 4 NN 0.215, with G(0) NN 0.1306; for the drop, 4 m 0.198, with 
G(0) = 0.0921. 

The stream-function distributions in figure 3 help demonstrate the importance of 
free-surface displacement: in the absence of any pressure gradients, both flows are 
solutions of the governing equations, and yet only one is likely to be realized. To 
determine which, suppose that a monolayer is advancing over fluid of finite depth 
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FIGURE 2. The surfactant distribution G ( X ) ,  instantaneous flow rate Q ( X ) ,  displacement thickness 
6 ( X )  and free-surface displacement H ( X )  for (a) a strip and ( b )  a drop. 

Ho, where the lower boundary of the fluid layer is well beneath the rotational region 
of the flow. If the free surface deforms freely (figure 3b), the lower boundary has no 
effect on the flow, since all motion decays exponentially in the downward direction. 
If the free surface is horizontal, however (figure 3a), then the irrotational flow that 
develops outside the boundary layer will drive a second unsteady boundary-layer 
flow just above the solid boundary. This in turn may influence the flow at the free 
surface; it is certainly the case that the net dissipation in the flat-surface case will 
be substantially greater than in the deforming-surface case. Gravity or capillarity 
are the forces that must provide the additional energy necessary to drive this second 
boundary layer. 

The influence of finite depth effects are examined in more detail in $5 below. Before 
this, however, the potentially significant large-time influence of surface contamination 
is considered. 
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FIGURE 3. The stream functions for a spreading monolayer strip: (a) the similarity solution @ ( X ,  Y ) ,  
for the flat free-surface problem; ( b )  its analogue tp([,q), for the freely deforming free-surface case. 
Arrows indicate the direction of the flow. 

4. Spreading over a contaminated interface 
Consider now the case in which a monolayer strip or drop spreads over an interface 

that is already contaminated with a uniform distribution of surfactant of constant 
dimensional concentration Tm. (This concentration can be taken as the reference scale 
TO in deriving (2.1), (2.8) and (2.4) (see 92.1); it is assumed the parameter A retains 
its scaling on some source strength TO > Too in (2.6), however.) The key aspects 
of the dynamics have already been explored in thin-layer studies (JG; Espinosa et 
al. 1993; Grotberg et al. 1995). Initially, the effect of contaminant is confined to a 
growing sublayer at the deposited monolayer’s leading edge (93.2). Once this layer 
has grown to a magnitude comparable with the length of the monolayer, i.e. once 
X ,  = 0(1) (see (3.6)), the time-dependence of the entire flow is altered. Below, it is 
shown for deep layers that the Eulerian velocity field is self-similar at large times, with 
disturbances spreading like (1.2), dependent not on the source strength A’ but on the 
level of contamination Too. Paradoxically, this suggests that a deposited surfactant 
monolayer might spread rapidly even for A’ << 1, a limit in which the energy 
available to drive the spreading is vanishingly small. Grotberg et al. (1995) have 
shown, however, that the Lagrangian path of a surface fluid particle, representing the 
distance travelled by the deposited monolayer (in the absence of surface diffusion), 
is dependent on A, so that there is no transport of deposited material in the limit 
A + 0. 

At the late stages of spreading of a strip or a drop, or for the spreading of a front 
from a relatively weak source, the surfactant concentration will everywhere be only 
slightly in excess of its nondimensional value at infinity T = 1. We therefore pose an 



366 0. E .  Jensen 

expansion 

r(x, t )  = 1 + 6 f  + O(S2), U ( X , Y ,  t )  = 66 + 0(S2), W ( X , Y ,  t )  = 6 8  + O(S2), (4.1) 
where 6 << 1. In such an expansion any free surface displacement must be 0(6), but 
since we are concerned with large-time behaviour, and have shown that displacements 
may grow like t ' /2 ,  it is necessary to restrict attention to the case in which restoring 
forces keep the free surface horizontal. Substituting (4.1) into (2.1), (2.4) (with 
9 = 0) and (2.8) yields at O(6) an unsteady problem that is linear in ii(x,z,t) and 
f (x, t),  

ii, = 24?-'iizz in z 2 0, (4.2) 

P, + a , ~  = 0, ii, = P, on z = 0, ii + o as z -+ co. (4.3) 
The vertical velocity field need not be considered at leading order. A scaling analysis 
reveals the following relationships : 

x - ( t 3 / . ? q 4 ,  z - ( t / 9 ) 1 / 2 ,  ii - f/(24?t)1/4. 

For consistency, we require that x >> z, i.e. t >> 1/24?, which is readily satisfied at large 
times. The x-scaling in dimensional terms is equivalent to (1.2). Thus, irrespective 
of the geometry or strength of the monolayer distribution, spreading proceeds like 
t3/4. 

New variables may be defined to take account of this self-similar structure. Since 
f - A x p n ,  we have ? - t-3"/4, for n = 0, 1 or 2 respectively. Writing 

x = (t3/24?)1/4X, z = (t/24?)'l2Z, t = T, 

P ( x , ~ )  = A (24?/t3)"/4 G(X, T ) ,  a(x,z,t) = (~24?(n-1)/4/t('+3n)/4) U ( X , Z ,  T ) ,  
(4.2) and (4.3) in these rescaled, nondimensional variables becomes 

U z z + $ ( 1 + 3 n ) U + ~ X U x + ~ Z U z  = T U T  i n Z  2 0 ,  (4.4) 

TGT + &U = i (nG + XGx), UZ = Gx on 2 = 0, (4.5) 

U + O  a s Z - + c o .  (4.6) 
The integral form of the momentum equation is obtained by integrating (4.4) with 

respect to Z,  

- ~ T Q T  + (3n - l )Q + 3XQx = 4Gx where Q(X, T )  = jo U dZ. (4.7) 

Integrating with respect to X and imposing the condition that Q + 0 as X + co gives 

Xn-(4/3)GX dX + T('-3")/48(XT3/4), 
Q(xy = 3Xn-(1/3) 4 1  

00 

so that Q is determined up to some arbitrary quantity 8, which represents a steady 
flow in the laboratory frame. This complementary function is presumably determined 
by the initial conditions and the boundary conditions at X = 0. The contribution 
to Q represented by the limit of integration at X -+ co introduces a singularity 
Q - AX('/3)-" as X -+ 0, so we anticipate that once again the similarity solution will 
fail to satisfy realistic boundary conditions at X = 0. If A = 0(1), this singularity 
can be accommodated by the unsteady component 4, provided g(<) - tn-( l l3)  as 
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FIGURE 4. A spreading strip on a contaminated interface. 

t + 00, so that there will be a boundary layer at the origin, which (as in 93.1.1) 
is unsteady with respect to the monolayer but is steady in the original coordinate 
system. 

Similarity solutions of (4.2) and (4.3), i.e. T-independent solutions of (4.4)-(4.6) 
for the strip and drop flows, have been computed using an integral approximation, 
the details of which are described in Appendix B. The strip solution is shown in 
figure 4; the drop solution, not shown, is very similar. As anticipated, the flow rate 
Q ( X )  (and hence the flow's displacement thickness) are singular at the origin. The 
perturbation surfactant distribution G ( X )  and the surface velocity U,(X) = :XG are 
well-behaved there, however. The surfactant distribution no longer has a singularity 
at its leading edge (as in figure 2), but instead diminishes smoothly to a uniform 
value as X -, co, while U,(X) (which is well-approximated by a simple exponential 
function, see figure 4) rises almost linearly to a maximum near X = 1.3, before falling 
rapidly to zero by X = 3. Whereas the clean-surface flows (figures 2 and 3) are 
characterized by stretching of the monolayer along its entire length (i.e. USx > 0 
for 0 < X < l), the effect of contamination is to introduce a significant region of 
free-surface compression (where Usx < 0). Much of the flow is therefore driven by 
a mechanism unlike that in the clean-surface case, namely through the generation of 
surface tension gradients arising through compression of the contaminant material. 
For a more detailed discussion of such behaviour see Grotberg et al. (1995). 

5. Finite-depth effects 
It is now evident that a localized monolayer, spreading over fluid of finite depth, 

spreads initially like t3/2("+2) (see (1. l)), generating a high-Reynolds number boundary- 
layer flow (figure 3b), until the effect of the lower boundary is first felt. Spreading then 
enters a more complex intermediate phase which persists until the monolayer length 
greatly exceeds the depth of the fluid layer. Thereafter, a lubrication-theory approxi- 
mation is appropriate, and spreading proceeds like t1'("+2) (JG), with a predominantly 
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viscous flow. Below, a simplified one-dimensional model of spreading is presented 
which characterizes the dominant features of the dynamics of this intermediate stage, 
without necessitating a full numerical solution of an unsteady two-dimensional free- 
boundary problem. 

5.1. The one-dimensional model 

The essence of the long-wavelength monolayer-spreading problem is contained in the 
two (dimensional) free-surface boundary conditions 

rt + v, - (u , r )  = 0, p ( n .  v)uls = - - v,r . (5.1) 1:; 1 
The similarity solutions given in 93 and JG provide accurate spatial distributions 
of r and u in suitable asymptotic regimes, but rely on the assumption that these 
variables have a specific time-dependence. An alternative approach, which captures 
fully unsteady behaviour at the expense of some spatial structure, is to write 

(n * V ) U l s  w -, 

decoupling the flow problem from the surfactant transport problem. The quantity 
%(x,t)  is the penetration depth of vorticity created at the free surface, which can 
be chosen to suit the situation. We concentrate primarily on ensuring that B is of 
the correct order of magnitude. The shape and magnitude of film deformations will 
weakly influence 2, but such effects are neglected at this stage. 

The reduced model may be nondimensionalized just as in 92, with x scaled on LO, 
3 on ELO, for some E << 1, etc. This leaves two nondimensional parameters, Re and 
4; for spreading over a clean interface, the parameter 4 in (2.6) can be set to unity 
by rescaling x + x / J & " / ( ~ + ~ ) ,  r -+ Equations (5.1) and (5.2) then reduce 
to a nonlinear diffusion equation 

r =a,(zrrX). (5.3) 

To determine the accuracy of this simplified model, we first compare predictions for 
thin-film and deep-layer flows with existing results. 

For flow over a thin film of mean depth Ho, we set e = &/LO and % = 1. 
Then (5.3) yields similarity solutions of the form r ( x , t )  = G(x/L)/L",  describing 
localized monolayers on uncontaminated interfaces, with L(t)  K L ' / ( " + ~ )  as required. 
The corresponding r-distribution for a strip, say, with Jx G dx = 1, 

(5.2) 
4 
3 

which has a shape almost indistinguishable from the curve labelled L = 8 in figure 5, 
compares reasonably well with the exact self-similar solution derived using lubrication 
theory by JG, given by r ( x ,  t )  = i L t [ l  - ( x / L ) ]  with the leading edge at L = (12t)'/3. 

For deep-layer flow, vorticity penetrates a dimensional depth of order (vt)'l2 (see 91), 
so we choose E = Re-'/2. Setting 2' = t'l2 is sufficient to obtain similarity solutions 
with the appropriate time-dependence (i.e. L( t )  cc t3/2(n+2)). However, these solutions 
fail to capture the important Blasius boundary-layer structure at the monolayer's 
leading edge, shown clearly in the curves for G ( X )  in figure 2, warranting a refinement 
of 9, as follows. The monolayer lies in 0 < x < L(t), where L remains to be 
determined. Near the leading edge, which moves with speed L, the penetration depth 
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FIGURE 5. Surfactant distributions predicted by the simplified model (5.3) and (5.7) for a spreading 
monolayer strip over fluid of finite depth; bullets show the boundary between the viscous and inertial 
regions at  x = X ( t ) .  Plots are given at  t = i, 0.652, 1.42, 4.44, 10.9 and 133 for L = (15/16)'13, 1.5, 
2, 3, 4 and 8 respectively. 

of vorticity 6 ( X )  (figure 2)  has a typical parabolic shape. This can be represented by 

for some constant c, which for simplicity is set to unity. Substituting (5.5) into 
(5.3), along with a self-similar surfactant distribution r (x, t )  = G(x/L)/L", we find 
that solutions exist provided L3L2"+' = constant, i.e. L K t3/[2("+2)1 as required. The 
similarity solution for a strip with Ji G dx = 1 is 

x 113 
4L3/2 

r = -(L - x)'I2(L + ix), u - - for 0 d x d L = (E) (2t)'I2. (5.6) 
3L - 2t 

This distribution is shown by the solid curve in figure 5 : it is clearly in good qualitative 
agreement with the exact solution (see G ( X )  in figure 2a). 

5.2. Modelling Jinite-depth spreading 
Having established that the one-dimensional model captures the time-dependence of 
the thin-layer and deep-layer flows exactly, and their spatial structures approximately, 
we turn now to the intermediate finite-depth case. Consider a localized monolayer 
spreading on a uniform fluid layer of depth HO where, at least initially, Lo << Ho. We 
again nondimensionalize using E = Ho/Lo, and set 2 = €*Re. The parameter E is no 
longer regarded as small: the applicability of the long-wavelength assumption will be 
reconsidered below. 

As the monolayer begins to spread, vorticity diffuses downward, so that after a 
(dimensional) time of O(H;/v) the presence of the wall becomes important. Thereafter, 
the spreading monolayer can be split into two distinct parts: region I (0 < x < X ( t ) ) ,  
in which vorticity has diffused to the lower boundary, so i. = 1; and region I1 
( X ( t )  < x < L( t ) ) ,  in which vorticity created at the free surface is diffusing down 
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into the fluid, uninfluenced by the solid boundary, so that (5.5) (suitably scaled) may 
be used, i.e. 2 = [ (L  - x ) / B L ] ' / ~ .  Imposing continuity of 2' at x = X implies that 
X ( t )  = L - BL. The two parameters JI' and B can then be eliminated through a 
rescaling : 

The time 'i: is based on the natural viscous timescale T, = Hi/v, so that vortic- 
ity reaches the boundary for 'i: = O(1). The timescale of the deep-layer flow is 
O ( ( L O / H O ) ~ T , )  (with LO < Ho, see 92), corresponding to 'i: < 1. The thin-layer flow 
evolves over a timescale O(To/B)  where B << 1 (JG), corresponding to 'i: >> 1. Thus, 
dropping the tildes, finite-depth effects are represented by (5.3) with 

x = (JI'g$)1/@+2)2, t = g'i:, = ( J & p / g n ) l / ( n + 2 y .  

0 < x < X ( t ) ,  
X ( t )  < x < L(t) ,  where X ( t )  = L - L (5.7) 

[(L - x ) / L ] ' / 2 ,  

provided, of course, that X ( t )  2 0. Surfactant mass is distributed between regions 
I and I1 such that, for a strip, say, MI + M I I  = 1 where MI = J;@)f dx, MII = 

J$y r dx, with the mass flux J from region I1 into region I at x = X ( t )  given by 

J = ( X  + ZfJf I , 
x = X ( t )  

so that MI, = J ,  Milt = - J .  Because Z is continuous at x = X ,  f x  must be continuous 
there too. The long-wavelength approximation, which applies within regions I and 11, 
should also be satisfied at their boundary because f is sufficiently smooth there. 

5.3. Self-similar solution 
Both the thin-layer and deep-layer spreading regimes for a strip, say (5.4), (5.6), are 
characterized by a surface velocity of the form us = Ax/t, for some constant A. To 
determine the evolution of the monolayer in the intermediate regime, we therefore 
assume that us = i x / L  for some L(t) .  It may readily be shown from the transport 
equation f t  + i3,(usf) = 0 (by the method of characteristics) that this assumption is 

2),  for equivalent to assuming a self-similar distribution r ( x ,  t )  = G(x /L) /Ln ,  ( n  = 1 
some function G. The f -distribution is readily calculated using f x  = -u,/Z. 

The strip solution is determined as follows. Starting in region 11, imposing f 
0, we recover the f -distribution in (5.6) for X < x < L, so that 

4 ~ 3 1 2  
MI1 = - - (4L + X ) ( L  - X)3? 

15 L 

L, t )  = 

Initially, before vorticity has diffused down to the boundary, X = 0 and MII = 1, and 
hence we recover (5.6), valid for 0 < t < i. At t = i, L = L = (15/16)1/3. For t > i, 
we set X = L - Y where Y = i. The surfactant distribution in region I can then be 
computed, ensuring that f and f x  are continuous at x = X .  It is 

f = 2 Y 2  1-- + - ( X 2 - x 2 ) ,  o < x < x  ( 3yL) 2yL 
Some r-distributions for values oft  2 are shown in figure 5, with bullets separating 
the viscous region 1 from the inertial region 11. Note that at large times, (5.8) reduces 
to (5.4) as required. It follows that for t > i, 

M , = f Y L 2  1--  l+--: , M I , = ; y 3  1-- ( 1) ( 4: y L 2 )  ( 9 7  
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FIGURE 6. The effect of finite depth on spreading rates: the monolayer length L(t) evolves from 
growing like t112 to t113 for a strip (a), and from t318 to for a drop ( b ) ;  the asymptotes are shown 
as dotted lines. ( c )  1 = tL/L as a function of time. 

so imposing the condition MI + MII = 1 gives 

L ~ + ~ L ~ Y - L  Y +-  + ; Y ~ = o .  (5.9) 
[ 2  ;I 

The root of (5.9) connecting L = Y = (15/16)1/3 with the asymptotic branch L2Y - 3 
describes the evolution of the monolayer. The corresponding ordinary differential 
equation for L(t) can be solved numerically; the solution for a strip is shown in 
figure 6. 

The transition between inertia-dominated and viscosity-dominated spreading is 
best demonstrated by plotting I = tL /L  = d(logL)/d(logt) us. time: see figure 6. 
I = 5 for 0 < t < 5,  and then I ( t )  diminishes smoothly and monotonically to 4. 
Correspondingly, the inertial region I1 shrinks (figure 5) and the viscous region I 
grows, relative to L(t):  Y/L = 0.1 (0.01) at t k: 4.5 (36.4), when L k: 2.85 (6.62) 
and I = 0.45 (0.365). Note that I remains significantly different from 4 even when 
Y/L = 0.01. The surfactant evolves from a parabolic to a linear distribution at the 
monolayer's leading edge; there will be a corresponding transition in the film height 
at this point, from an initially parabolic shape (figure 3b) to the abrupt discontinuity 
predicted by lubrication theory (Borgas & Grotberg 1988). The steeper gradient in 
the shrinking inertial region makes the monolayer slightly shorter than its asymptotic 
length at large t ,  (9t)'/3, as is demonstrated in figure 6(a). Note that when L - (9t)1/3, 
the width of the inertial region Y = L cc t-2/3, as predicted by JG. 

A similar argument may be used to determine the evolution of a drop. Imposing 
a mass constraint J:(') XI' dx = 1, rescaling x = (.A'W)1/4R, t = WZ, r = ( J Z / W ) ' / ~ F  
and dropping the tildes, a solution is again sought with velocity distribution u = tx/L. 
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Initially, 

The mass constraint for t > nay be shown to be 

The branch we require connects L = Y = (35/16)'14 to the asymptote L3Y = 8. The 
ultimate viscous solution is 

Computing the solution numerically, we find that 1, = t i / L  diminishes from 5 to 
at much the same rate as for the strip (figure 6c). In both cases, i falls to within 10% 
of its ultimate value within a dimensional time 85H;/v, irrespective of the Reynolds 
number of the original flow (provided, of course, that it is initially large). 

6.  Discussion 
The spreading of a dilute insoluble surfactant monolayer on the free surface 

of a deep viscous liquid has been considered. Two monolayer configurations of 
fundamental importance have been examined, a planar strip and an axisymmetric 
drop, complementing the fixed line-source (planar front) case studied by Foda & Cox 
(1980). After an initial transient period, solutions approach a self-similar form, in 
which a strip spreads like t1I2 and a drop spreads like t3/*. For both distributions, self- 
similarity requires that the surface velocity us cc x / t  along the length of the monolayer 
(making this an unsteady stretching flow), conveniently decoupling the surfactant 
transport equation from the flow problem. For sufficiently small monolayers, the 
effects of gravity are weak enough for the spatial nonuniformity of the velocity field 
to generate displacements of the free surface (see H ( X )  in figure 2). The midpoint of a 
strip, for example, is displaced downwards by a distance that behaves asymptotically 
like 1.343(~t) ' /~ + C, where C is a constant arising from an inner layer which must 
exist at the origin in order for the solution to adjust to the appropriate symmetry 
boundary condition ($3.1.1). The monolayer's leading edge behaves like a rigid plate; 
here the free surface is elevated with a characteristic parabolic shape, and the shear 
stress (given by -Gx, figure 2) is singular. The locally large gradients in H ( X )  may 
be smoothed by capillary forces; the singularity in the surfactant concentration G ( X )  
may be smoothed by either surface diffusion or by weak concentrations of surfactant 
on the surface of the undisturbed fluid ($3.2.1). In most cases the corresponding 
sublayers at the monolayer's leading edge grow quasi-steadily relative to the length 
of the monolayer, so that each effect may have the capacity to dominate the flow 
at large times. Surface contamination, for example, ultimately causes disturbances 
to the fluid to spread like t3/4, regardless of the monolayer configuration ($4), and 
introduces a significant region of longitudinal free-surface compression to the flow 
(see Us in figure 4); similarly, if surface diffusion becomes dominant then spreading 
proceeds like t'I2 (JG). 

As the monolayer length grows, gravity becomes increasingly important. It acts 
across the entire flow to suppress the growth of free-surface displacements, by gen- 
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erating an irrotational flow beneath the boundary layer. Since the strength of the 
surface-tension gradients driving the basic flow is perpetually diminishing, gravita- 
tional effects eventually dominate, so that ultimately the free surface is returned to the 
horizontal, although at the monolayer’s leading edge a weak pressure-driven surface 
displacement (a ‘Reynolds ridge’) may be generated (Harper & Dixon 1974; Scott 
1982). While gravity competes with the basic flow, spreading is inherently unsteady, 
losing its self-similar form. However, once the free surface is again horizontal, spread- 
ing continues at the same rate as before. The flat-surface flow (figure 3a) and the 
freely deforming surface flow (figure 3b) are equivalent, being connected via a Prandtl 
transformation of the boundary-layer equations ($2.3). In terrestrial situations, gravity 
is in general more likely to influence the flow than either surface diffusion or capillary 
forces. It is also likely that, in practice, gravity-capillary waves are generated by 
whatever experimental mechanism is used to confine the monolayer initially; these 
waves could significantly interfere with the spreading process. 

Of considerable practical interest is the effect of a solid boundary a distance HO 
beneath the free surface. This was examined using a simplified one-dimensional model 
(in $5)  aimed at capturing the dominant time-dependence of the flow. The deep-layer 
spreading model is appropriate until a time of O(H;/v). Thereafter, the flow can be 
divided into two distinct regions: just upstream of the monolayer’s leading edge is an 
inertial region, in which vorticity is diffusing downwards, uninfluenced by the solid 
boundary; towards the centre of the monolayer, vorticity has already diffused across 
the fluid layer, so that vertical gradients in vorticity are gradually eliminated and the 
flow here is predominantly viscous. As the monolayer spreads, the inertial region 
shrinks relative to the viscous region, and correspondingly the surfactant distribution 
evolves from a parabolic to a linear distribution at the monolayer’s leading edge 
(figure 5 ) ;  meanwhile, the monolayer’s spreading rate diminishes, from t l / *  to t ’ /3  
for a strip, say (figure 6). It is only once the monolayer length greatly exceeds HO 
(i.e. L >> 1 in figure 6) that the residual effects of inertia no longer influence the 
spreading rate; lubrication theory is then appropriate. Clearly, this heuristic model 
provides a far from complete description of the flow, but it does establish a strong 
foundation for future more accurate calculations. These are necessary to explain fully 
the rupture instability observed experimentally in the very early stages of thin film 
flows, for example (Gaver & Grotberg 1992), which is a potential hazard in clinical 
surfactant replacement therapy (JG). 

The validity of the deep-layer and finite-depth results presented here should ideally 
be verified by full numerical solutions of the unsteady boundary-layer (or even 
Navier-Stokes) equations, allowing the competition between all the different forces to 
be properly examined. Instabilities of the flow should also be considered: it is possible, 
for example, that the azimuthal instability of divergent flows, exhibited by Shtern 
& Hussain (1993) for the Navier-Stokes solutions of Wang (1971) and Bratukhin & 
Maurin (1967), might be relevant at early times. Further investigations are motivated 
by the fact that the system can be reduced to a nonlinear diffusion equation, as in 
$5 : a localized monolayer is therefore likely to exhibit ‘waiting-time’ behaviour, i.e. 
depending on the initial surfactant distribution, the monolayer boundary may remain 
stationary for some finite time before it starts to move (Lacey, Ockenden & Tayler 
1982). The ‘closing-hole’ flow demonstrated by Jensen (1994) for a thin film, in which 
a shrinking clean hole in an otherwise uniform monolayer was shown to be governed 
by a similarity solution of the second kind with a transcendental exponent, should 
also be examined in the deep-fluid case. 

The t3l4 spreading rate for a monolayer fed from a stationary source of constant 
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surfactant concentration has been verified experimentally by a number of workers 
since Foda & Cox (1980), including Camp & Berg (1987). If the surfactant source 
becomes depleted at large times, however, the spreading rate will be reduced and 
may approach the spreading rates predicted here. Data exhibiting such behaviour 
have been presented by Joos & Pintens (1977), and by Joos & van Hunsel (1985) 
who confirmed the t3I4 result for a pure surfactant solution, but for a dilute mixture 
of fluorinated anionic surfactant with a common cationic surfactant they found a 
spreading exponent of 0.575. This reduced coefficient may well have arisen because 
of dilution effects, although it equally may be due to a nonlinear equation of state 
a(r), for example. Clearly, further experimental studies are called for. 

Finally, an important and direct application of the strip solution of 93 is presented. 
Consider a fixed point source of surfactant held stationary at the free surface of 
a deep layer of fluid, and suppose that the fluid is moving with a uniform steady 
current with nondimensional velocity @i. Starting at time t = 0, the source feeds a 
monolayer, which is swept downstream by the current: this could represent an oil 
slick spreading in the surface-tension regime (Hoult 1972) from a stationary tanker, 
for example. We assume that gravity keeps the free surface horizontal. By seeking 
a quasi-steady balance between advection by the current in the x-direction, and a 
transverse spreading in the y-direction due to surface-tension gradients, it is shown 
in Appendix C that the slick width Y (x, t )  is of the form 

for some function F(t) related to the source strength. The variables here are nondimen- 
sionalized following 92. The slick therefore has a quasi-steady self-similar parabolic 
shape in a particular asymptotic regime, where the leading-order transverse flow is 
exactly the flat-surface strip flow calculated in 93 and shown in figure 3(a). This 
approximation is valid at sufficiently large times over a significant proportion of the 
slick, far downstream of the source but far upstream of the slick's leading edge (at 
x NN @t). The full details of this flow await investigation. 

Appendix A. Numerical method 
The numerical method used to solve the strip problem (2.25)-(2.27) is briefly 

described below; the drop problem is very similar. Knowing the structure of the 
solution at each end of the domain (993.1, 3.2), it is convenient to re-express the 
governing equations in 'natural coordinates', before seeking a numerical solution. 
Since the stream function @ ( X ,  Y )  must be of the form X F ( X 2 ,  Y )  at the origin, and 
a function of Y /( 1 - X)'I2 at the leading edge, we put x = X 2 ,  y = Y /( 1 - X 2 ) 1 / 2  and 

@ [ X ,  Y ]  = ; x q 1  - X ) ' / 2 F  ( x 7 Y), G ( X )  = ;(I - x)'/2g(x), 

Q ( X )  = i ~ " ~ ( 1  - x ) ' / ~ ~ ( x ) ,  H ( X )  = (1 - x)'I2h(x), 
so that (2.25) becomes 

x( 1 - x) [F,Fxy - F,F,, - F,,] = Fyyy + (1 - x)F, + iyF,, + ( 4  - x)FFyy - ;( 1 - x)F; 

subject to 

F = 0 ,  F y = l ,  Fyy=2(l--x)gx-g on y=O, O < x < l ;  

F + q(x)  as y --f 00, where (i - x)q + x(1- x)q, = i h  - x(1- x)h,. 
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Setting x = 0 we recover (3.1) with F(0,y) = go(y), with Fo,,(O,O) = -0.2086 and 
q(0) = h(0) NN 1.3422. At the leading edge, with x = 1, we recover the Blasius solution, 
as in $3.2, with F0~,(1,0) NN -0.3316 and q(1) = -h(l) = 1.7208. 

A numerical solution was obtained using the simple method described by Tuck 
& Bentwich (1983). The governing equations are parabolic, which means that a 
solution can be obtained by marching from the leading edge towards the origin. 
This was done by replacing x-derivatives by first-order backward differences, i.e. 
Fx(x, y) NN [F(x  + Ax, y) - F(x ,  y)] / A x ,  for some step-length Ax,  and then marching 
from x = 1 to x = 0. Knowing the solution at x + A x ,  a simple shooting method 
using a Runge-Kutta routine with Newton iteration is used to determine the solution 
at x. This was performed at 100 x-stations, with 800 steps in the y-direction, for y 
values up to 8. In the transformed frame, the solution varies smoothly, and there are 
no boundary-layer structures to be resolved. 

Appendix B. Spreading with contaminant: integral approximation 
We seek here T-independent solutions of (4.4)-(4.6). As in $2.4, the surfactant 

transport equation (4.5) simplifies to an exact derivative for the strip and drop cases. 
Assuming G -+ 0 and U --+ 0 as X + 00, U(X,O) = dXG(X) for n=1, 2. Setting 
U(X,Z) = XG(X)F(X,Z) for some function F ,  (4.4) becomes 

FZZ + ~ Z F Z  + ~ X F X  + i(3n + 4 + 34)F = 0 in Z 2 0, 

with F(X,O) = i, Fz(X,O) = 4/X2, F + 0 as Z + co. The solution depends on G 
only through the quantity +(X) = XGx/G. Writing Q = XG(X)q(X), (4.7) becomes 

(B 1)  

We now seek an integral approximation by assuming that F takes a specific form, 
namely F = ie-z/s(x). Then, the flow rate q = id,  the tangential stress condition at 
Z = 0 is 3/(46) = +/X2 and so q4 = -( 

(2 + 3n + 34)q + 3xqx = 44/x2. 

Substituting for 4 in (B 1) gives 

A phase-plane analysis shows that there is a unique solution which satisfies q -+ 0 as 
X + co, which is that given by the balance q - 4/3X2. In this limit 4 - -33X4/43, 
so at leading order 

G - G~ exp [-33 as x --+ O0 (B 3) 

for some constant GI. As expected, the corresponding solution of (B2) is singular in 
the limit X + 0, with the dominant terms here being qx = -(2 + 3n)q/(3X), so that 
q - q0X-(fl+2/3). Numerical integration of (B2) shows that qo = 1.1816 for a strip, 
1.870 for a drop. Correspondingly, 

approaches a constant Go as X -+ 0, consistent with the anticipated singular behaviour 
Q - X(1/3)-fl as X + 0 ($4.1). 

G(X) and Q(X) have been computed for a strip, assuming that G(0) = 1, and are 
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shown in figure 4. Since 4 varies for a strip like X 4  for large X ,  and X"/3  for small 
X ,  (B 3 )  with G1 = 1 is a reasonable approximation of the function over the complete 
domain; it may also be used to compute a good approximation to Us = i X G ,  as 
shown in the figure. 

Appendix C. A stationary surfactant source in a uniform stream 
Consider a stationary surfactant point source at the free surface of a fluid layer 

which is moving with a uniform, steady current %P: this is equivalent to a source 
moving with speed -%P with respect to stationary fluid. The speed % is nondimen- 
sionalized following the scheme in 92. Writing (u, u, w) as the fluid velocity components 
relative to the moving current, the full governing equations for a monolayer spreading 
from a stationary source on a clean horizontal free surface, in the absence of surface 
diffusion, are 

u, + v y  + w, = 0, 
u t  + %ux + uu, + uuy + wu, = .4?-1uzz, 

V t  + % + uux + uvy + wu, = B-luzz,  

with, on z = 0, 

w = 0, u, = r x ,  vz = ry, 
and 

u - 0 ,  u + O  as z -co .  
We seek a quasi-steady balance (represented by the underlined terms, above) between 
advection by the current in the x-direction, and a transverse spreading in the y- 
direction due to surface-tension gradients : this balance is analogous to that identified 
by Smith (1973) in describing the shape of a viscous gravity current moving down an 
inclined plane (for details see Lister 1992). The reduced surfactant transport equation 
admits a flux condition 

-% dx [ It)%, dy] = 0, i.e. 1 %r dy = F(t ) ,  

where F ( t )  is related to the unsteady source strength and Y (x, t )  represents the slick 
boundary, i.e. r ( x ,  Y ,  t )  = 0. The reduced governing equations are then completely 
analogous to those describing a spreading strip on a flat surface (i.e. (2.1), (2.4) and 
(2.8)), with x/% effectively a time-like coordinate. 

The appropriate scalings for self-similar solutions of the reduced equations are as 
follows: downward diffusion of vorticity (%ux - 9$-1u,,) implies that z - (~/%.4?)~'*; 
the integral flux condition implies that r - F / % y ;  the transverse shear-stress condi- 
tion gives u - T z / y ;  the balance between advection and transverse spreading gives 
u - Uy/x and so mass conservation gives w - (%/Bx)' /~;  thus (6.1) follows. To 
determine when this scaling is valid, we must establish the conditions for the remain- 
ing terms to be negligible. Noting that u - Tz/x, ut << %vx requires that x << at, 
while u << % and u, << uy require that y << x. Equation (6.1) is therefore applicable 
far downstream of the near-source region (where x - y), far upstream of the slick's 
leading edge (where x - %t), and at times sufficiently large (depending on the source 
strength) for these two zones to be widely separated. 

Y ( x , t )  

-Y(x , t )  -Y(x , t )  
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